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a b s t r a c t 

Not only does attribute of nodes affect the effectiveness and efficiency of community division, but also 

the relationship of them has a great impact on it. Clusters of arbitrary shape can be identified by the 

Spectral Clustering (SC). However, k-means clustering used in SC still could result in local optima, and 

the parameters in Radial Basis Function need to be determined by trial and error. In order to make such 

algorithm better fit into community division of social network, we try to merge attribute and relation- 

ship of node and optimize the ability of spectral clustering to get the global solution, thus a new com- 

munity clustering algorithm called Spectral Clustering Based on Simulated Annealing and Particle swarm 

optimization (SCBSP) is proposed. The proposed algorithm is adapted to social networking division. In re- 

lated experiments, the proposed algorithm, which enhances the global searching ability, has better global 

convergence and makes better performance in community division than original spectral clustering. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Recently, with the rapid development of Internet technology,

big data generated by social networks such as Twitter and Face-

book are urgently needed to be explored and analyzed. Due to the

large scale of social networks, it is important to turn them into

smaller ones through community division methods. Thus, the ef-

fectiveness and efficiency of community division has become an

important issue in this regard [1] . Dividing social network by em-

ploying effective clustering algorithms can have a wide range of

application in our real-life world. Social networks have underlying

clusters according to individuals’ attribute and relationship. Usu-

ally, people in a certain cluster have similar interests and person-

ality. Therefore, the common interest in a certain cluster can be

deduced by analyzing a small sample in it, and then companies

can recommend their products with higher accuracy and lower

risk. In the field of education, educators can adapt their educa-

tional method to different level of students classified by such al-

gorithms. In criminal psychology, if there are several criminals in a

cluster, police can pay more attention to other individuals in this

cluster, who may also have high potential of committing a crime.

What’s more, an effective clustering algorithm can be applied to

other fields such as image processing and computer vision. 

There are many kinds of clustering algorithms used to de-

tect community. Classical algorithms are popular. For example,
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-means, k-medoids and K-Harmonic [2] are based on the node at-

ributes, while Fast-Newman algorithm [3] was proposed on the

asis of the modularity focuses on relationship. Hierarchical clus-

ering is another kind of algorithm to divide the community, such

s Louvain algorithm for large networks [4] , Girvan Newman algo-

ithm [5] and link community [6] . Scott and Smyth combined both

 modularity and spectral clustering together through Q-Laplacian

atrix and local greedy heuristic search [7] . Shihua Zhang raised

 new modularity function based on generalizing Q modularity

nd fuzzy c-means clustering [8] . In addition, there are some other

ommunity clustering algorithms: Density-based spatial clustering

hich has a wide range of application in urban planning and

arketing [9] , graph-skeleton based clustering [10] and Structural

lustering Algorithm for Networks (SCAN) based on the edge den-

ity and Clustering Centrality [11] . 

Most of the clustering algorithms separate the attribute and

elationship of nodes while clustering a complex graph. But in

act, they both affect the result of community division. For exam-

le, in co-authorship network, author’s researching direction and

urrent partnership both affect the frequency and probability of

ooperation. And in social network, similar interest and friend-

hip make two users close to each other. Therefore, more ex-

ct information can be obtained by taking attribute and relation-

hip of node into account together. To some degree, it can be

mportant for social network research. Actually, there have been

ome studies in this field [12] . On the basis of these factors, we

imed to improve a clustering algorithm adapted to this kind

f community network. Thus, spectral clustering comes into our
ind. 
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In this paper, we aim at improving Spectral Clustering (SC) to

ncrease its efficiency in community division of social network. In-

ensified research on spectral clustering leads to explosive devel-

pment and improvement over the past several years [13] , which

s easy to implement and reasonably fast. However, traditional SC

s sensitive to the initial data. What’s more, after feature decom-

osition, traditional SC chooses k-means clustering to cluster with

he eigenvectors-matrix, while k-means clustering is easy to con-

erge to a local optimal solution. Taking these problems above into

ccount, and given the rapid convergence of Particle Swarm opti-

ization (PSO) and good ability to search the global optimal solu-

ion of Simulated Annealing (SA), a new algorithm called Spectral

lustering Based on the Simulated annealing and Particle swarm

ptimization (SCBSP) was proposed. Actually, the proposed algo-

ithm is adapted to the community division of social network.

rom experiments which are going to be explained in detail later,

CBSP really do make a step forward in community division of

eal-life social networks such as Sina Microblog and Facebook. 

In our study, we first improve the traditional spectral cluster-

ng itself. We implement traditional spectral clustering and apply

t to cluster simple real-life social network, in which the perfor-

ance of traditional SC is not very satisfying. To some degree it

s because k-means algorithm is easy to reach a local optima. One

f the good replacements of k-means is PSO, which has high con-

ergence speed and good performance in low-dimensional vector

pace, combined with SA, which has the ability of finding global

ptima. SCBSP proposed in this paper is based on merging these

wo algorithms with SC. 

Next, we revise the step of preprocessing data in order to make

ur improved SC better fit into community division. When doing

ommunity division, it is important to take both attribute of nodes

nd relationship between them into consideration. However, tradi-

ional similarity matrix just cares about the differences between

he attributes of nodes, and it ignores the relationship between

odes in the situation of community division. Thus we define a

ew similarity matrix which merges attribute and relationship. 

Finally, we conduct several experiments on both randomly gen-

rated data and real-life social network to evaluate our method.

he experiment results show that the method has both high effi-

iency and high accuracy. 

The rest of this paper is organized as follows: Section 2 in-

roduces related work; Section 3 explains our proposed algorithm

n detail which begins with a brief review on SC, PSO and SA;

he experimental results on random generated data and real-life

ata from famous social networks are presented in Section 4 , and

ection 5 concludes this paper. 

. Related work 

Social networks are ubiquitous, and researchers have investi-

ated a growing number of data generated by social networks.

et, most existing measuring methods do not take both attribute

nd relationship of nodes into consideration, thus they do not

ully capture the richness of the information contained in the data

 14 , 15 ]. Most methods focus on improving the k-means, k-medoids,

ewman and Girvan, Density-based methods and so on. 

The classical partitioning methods for clustering are k-means

nd k-medoids, they are easy to implement but are based on com-

lex mathematical theory. These classical algorithms are founda-

ion of many other clustering algorithms. In k-means algorithm,

lusters are represented by a mean value and object exchanging

tops if the average distance from objects to their cluster’s mean

alue converges to a minimum value [16] . K-medoids algorithm

epresents each cluster by an actual object in it. However, as is

nown to all, the original k-means proposed by James MacQueen

s easy to converge to a local optimal solution and sensitive to the
nitial data [14] . In k-harmonic means, harmonic means function

hich applies distance from the data point to all clustering cen-

ers is used to solve the problem that clustering result is sensitive

o initial value instead of the minimum distance [2] . Although the

roblem about initial data is solved, another problem still exists.

n the basis, the k-harmonic means was improved by the Simu-

ated Annealing called K-Harmonic Means Clustering with Simu-

ated Annealing [17] . In the K-Harmonic Means Clustering, simu-

ated annealing is used to search the global solution whenever a

ew result is obtained by k-harmonic means. 

In the classical algorithms, the number of clusters must be se-

ected by researchers and is usually tried for times by tests. So,

esearchers sought for methods which can automatically choose

umber of clusters. Unlike the k-means that needs to know the

umber of clusters first of all, an objective function for graph clus-

ering was raised by Newman and Girvan called Q function. In this

ethod, the number of clusters can be automatic selected, which

void trying cluster numbers for several times before getting a bet-

er result. In other word, Q function has higher value when com-

ined with good clustering method. While because of the high

omplexity of Girvan-Newman algorithm, Newman proposed an-

ther algorithm based on the Q function called Fast-Newman al-

orithm [ 3 , 18 ]. What’s more, because spectral clustering is popular

or its process of recursively splitting the graph, Scott et al com-

ined both Q function and spectral clustering together. From the

xperimental results, the two novel algorithms proposed by Scott

re efficient and effective [7] . The first algorithm directly searches

or global maximum of Q by performing eigenvector decomposi-

ion on a matrix called Q-Laplacian matrix, while Newman’s algo-

ithm improves the maximum of Q by local iteration. The second

lgorithm uses a local greedy heuristic search which is similar to

ewman’s method. At the same time, for the popularity of spectral

lustering, a lot of researcher has explored the algorithm, such as

he Shi and Malik algorithm, the Kannan, Vempala and Vetta al-

orithm, the Ng, Jordan and Weiss algorithm [ 19 , 20 , 14 ] and other

ore effort s [21–24] . In addition, the ideal of Q function is also ap-

lied to identification of overlapping community structure. Shihua

hang combined a new modularity function based on generalizing

 function and fuzzy c-means clustering [8] . 

Other researchers sought for methods different from the classi-

al algorithms, they proposed algorithms such as density-based al-

orithms based on the structure of data. To some degree, density-

ased methods are the same as Girvan-Newman methods, users

on’t need to know the number of clusters at the beginning.

ensity-based methods are more sensitive to initial parameters

han Girvan-Newman methods, but they can identify the noise in

he data. When several objects are close to each other, they form

ense clusters, and they are separated from each other by regions

ith low density of objects. Thus dense clusters can be detected

y finding such low-density regions. DBSCAN (Density-based spa-

ial clustering of application with noise) is the most representative

ethod in this field. In addition, density-based methods can also

e applied to spatial clustering, such as clustering in Geo-Social

etworks [16] . Because most traditional density-based methods

ave difficulty in detecting communities of arbitrary and some-

imes extreme shape, for example evenly distributed nodes, and

hey usually have difficulty identifying central nodes and outly-

ng ones, gSkeletonClu (graph-skeleton based clustering) was pro-

osed for community division [10] . The gSkeletonClu algorithm

rojects the network to its Core-Connected Maximal Spanning Tree

CCMST) and finds its core nodes to cluster this network. This

ovel algorithm can also avoid the problem of the chaining effect

nd resolution limit faced by typical MST-based clustering algo-

ithms and modularity-based algorithms. 

Recently, much ink has been spilled onto new methods like

pectral clustering [13] . These methods focus on improving the
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a  
traditional spectral clustering. However, although spectral cluster-

ing has been applied to cluster social network [25] , the method of

spectral clustering merging attribute and relationship of node has

not been employed before. Spectral clustering has a unique pre-

process step, which we want to take advantage of to merge at-

tribute and relationship. Thus we choose to improve SC to make it

a more powerful method and better fit into community division.

In this paper, the proposed algorithm is different from the algo-

rithms mentioned above, and the experimental results show that

the proposed algorithm has a good result. 

3. Spectral clustering based on simulated annealing and 

particle swarm optimization 

3.1. Spectral clustering 

The method of spectral clustering originated from the spectral

graph division, and the essential part of spectral clustering is to

construct and make use of the Laplace matrix to reduce dimen-

sionality of dataset. To some degree, this step is equivalent to the

reconstruction of the original sample space. 

In the spectral clustering algorithm, clustering problem can be

regarded as partitioning an undirected graph. Suppose an undi-

rected graph as G (V, E), V represents the nodes in the graph G ,

and E is the relationship between nodes. Usually, E is represented

by an adjacent matrix. What’s more, the criteria of classification

has various ways, such as Normalized cut, Ratio cut, Average cut

and so on, but the goal of the criteria is to make the correlation

of two nodes larger in the same subgraph, and smaller in different

subgraphs [26] . 

In the step of preprocessing data, the graph should be trans-

ferred into similarity matrix and further transferred into Laplace

matrix. Similarity matrix can be referred to as affinity matrix,

which is usually represented by S , the element in i th row and j th

column of the similarity matrix is defined as: 

S i j = e 
−
(

d( v i , v j ) 

2 σ2 

)
(1)

where v i represents the i th node, d(v i ,v j ) is the distance between

node v i and v j , usually uses Euclidean distance to represent, σ is

the scale parameter for the zoom level of the distance between

two nodes [ 26 , 27 ]. 

Based on the statement above, the basic process of spectral

clustering can be expressed as follows: 

In this paper, the goal of the algorithm is to find a community

division represented by C = {C 1 ,C 2 ,…C k } , and make the sum of dif-

ferences smaller within the cluster. The sum of difference within

the cluster is as follows: 

J c = 

k ∑ 

j=1 

∑ 

i ∈ C j 
( R i − C X j ) 

2 
(4)

where the CX j is a k -dimensional vector, CX j = ( CX j 1 , CX j 2 ,…, CX jk )

is on behalf of each center of cluster, and satisfies the Eq. (5) . 

 X j = 

1 

n j 

∑ 

i ∈ C j 
R i (5)

where n j is the number of nodes in j th cluster. 

3.2. Improvement on spectral clustering in community division 

The relationship of nodes is often overlooked in the typical

spectral clustering algorithms and the contrast between the nodes

ought to be concerned about when evaluating similarity matrix.

Therefore, the goal is establishing the cluster model of the graph

containing both attribute of nodes and relationship between them.
he construction of the similarity matrix is different from the orig-

nal spectral clustering. 

The original spectral clustering calculates the similarity matrix

y Radial Basis Function [26] . However, taking the uncertainty of

he parameters σ in Radial Basis Function into consideration, an

cceptable solution needs to be tried by tests. Thus it is inconve-

ient to use Radial Basis Function Though Hongjie Jia et al. pro-

osed the Self-Turning algorithm in which parameters in similarity

atrix can be determined automatically based on shared nearest

eighborhood [28] , Laviers et al. also proposed an approach to de-

ermine the parameter σ dynamically [29] , and they still depend

n this parameter. To solve the above problem, we proposed a

ethod which does not use the parameter σ or Radial Basis Func-

ion. 

Meanwhile, combined with PSO which has high speed of con-

ergence and SA which has superior ability of obtaining global op-

ima, a new clustering algorithm called Spectral Clustering Based

n Simulated Annealing and Particle Swarm Optimization (SCBSP)

s proposed. 

.3. A review of particle swarm optimization and simulated 

nnealing 

In the PSO algorithm, it is assumed that our problem is in a

 -dimensional search space. The particle group consists of n par-

icles, and each particle’s position represents an existing solution

n the k -dimensional search space. The position of i th particle is a

 -dimensional vector X i = { X i 1 , X i 2 … X ik } and the moving speed

f i th particle is another k -dimensional vector V i = { V i 1 , V i 2 ,…,

 ik } . The individual historical optimal value of the i th particle is

 i = { P i 1 , P i 2 ,…, P ik } and the global optimal value can be defined

s a k -dimensional vector P g = { P g 1 , P g 2 ,…, P gk } . Thus, each parti-

le can update their speed and position according to the following

ormula: 

 i j 
t+1 = ω V i j 

t + η1 r 1 
(
P i j − X i j 

t 
)

+ η2 r 2 
(
P g j − X i j 

t 
)

(6)

 i j 
t+1 = X i j 

t + V i j 
t+1 (7)

here ω is inertia factor, ϖ∈ [0.1, 0.9]. η1 , η2 > 0 and are known as

cceleration factor, usually η1 = η2 = 2, r1 and r2 is random num-

er in [0, 1] . In the process of iteration, speed and position of par-

icle can be confined within a certain range. In each step of itera-

ion, both individual optimal solution and global optimal solution

re updated. At the end of the iteration, P g is the answer of global

ptimal solution. 

Although PSO has fast convergence rate, the result of population

volution relies on the global extremum and individual extremum.

o some degree, it is inevitable that PSO falls into local optimum

asily. To solve this problem, Simulated annealing (SA) is intro-

uced to assist Particle swarm optimization. SA is a stochastic op-

imization algorithm based on Monte Carlo iterative strategy. The

lgorithm is the simulation of physical annealing process, which

llows the adjustment of the searching direction under the con-

rol of a decreasing temperature. Based on Metropolis guidelines,

A may accept a worse state at a certain probability in some steps

hile going towards better state on a global scale. Finally SA can

btain the global optimal solution [30] . To some degree, SA is an

lgorithm with low efficiency. However, a more accurate and effi-

ient strategy called SP which combines SA and PSO can be applied

o the SCBSP after dimensionality reduction. The description of SP

ill be introduced in detail in the step of SCBSP. 

.4. The main process of SCBSP 

The first step is improving the similarity matrix. Suppose that

 social network is a graph G = (V, E) , where V represents nodes in
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he graph, and the relationship between nodes is E . Assume that

here are n nodes, and each node has m -dimensional properties,

o each node consists of an m -dimensional vector A ( V i ) = ( a i 1 , a i 2 
…, a im 

) . Then, the properties of all nodes can be represented by

n n ∗m matrix called A , where A ij denotes the j th property of i th

ode. And all the relationship can be denoted by an n ∗n matrix

 . Then, for convenience, Euclidean distance is employed here to

epresent the discrepancy between two nodes. Thus, here comes

n n ∗n matrix M and M ij is the Euclidean distance between vector

(V i ) and vector A(V j ) . In another word, M ij represents the differ-

nce between node i and j . 

After getting the difference matrix M obtained by the above

ethod, in order to merge the attribute and relationship of node,

e define the following operations to transform the difference ma-

rix M into a similarity matrix containing both information (at-

ribute and relationship) of the entire graph. Thus, for each pair

f node i and j , S ij = sim (i, j) , in which S represents the ultimate

imilarity matrix. In this experiment, on the base of data density

16] , the functions are defined as follows: 

im (i, j) = α × e 
− W i j ∑ 

u ∈ �( i ) 
W iu + 

∑ 
u ∈ �( j ) 

W ju + ( 1 − α) × e 
− 1 

M i j +1 (8)

here � (i) means the set of adjacent node of i , and α means the

imilarity coefficient which is usually set as 0.4. 

The work of merging the attribute and relationship of node into

 similarity matrix in social networks has been completed. By far,

n improved preparation work for spectral clustering and subse-

uent work is finished. 

When analyzing social network data with SCBSP, firstly, ap-

ly the improved similarity matrix and obtain the similarity ma-

rix S . Secondly, calculate diagonal matrix D using formula (2) and

aplace matrix L of G using formula (3). Thirdly, according to the

pectral clustering framework, assuming that the social network is

ivided into k communities, calculate the largest k eigenvalues and

orresponding eigenvectors. Using the k eigenvectors, they form

n n ∗k matrix, in which the i th row R i = ( R i 1 , R i 2 ,…,R ik ) represents

he information of node i . Finally, apply PSO and SA to obtain the

lobal optimal solution by clustering nodes in the reconstructed

ample space using the following method. 

It is assumed that the number of particles in particle swarm

s m , in which each particle represents a possible community di-

ision. The number of dimensions of the particle is the number

f nodes in social network. And each dimension of it represents

hich community the node belongs to. In another word, consider-

ng the position vector of i th particle is X i = ( X i 1 , X i 2 …… X in ) , each

imension satisfies 1 ≤ X ij ≤ k , and X ij means that j th node belongs

o X ij th community. 

Then, when running the PSO algorithm described above, a lit-

le change is made using the strategy of SA. The process updating

he global optimal solution P g has been adjusted because the op-

ration will make the answer fall into a local optima easily just

ccording to the individual optimal solution P i . So the SA is chosen

o approach the global optimal solution P g after the initial updat-

ng operation. In this part, the initial temperature T max in SA is J c of

 g ( J c is described in Eq. (4) ). Here, J c_old represents J c of P g. Mean-

hile, the reciprocal of initial temperature is set as the minimum

emperature, and the annealing coefficient DR and the maximum

umber of times is set for the inner loop. In the iterations of SA in

CBSP, when one or several cluster results changed which leading

o a new division results, the new sum of difference can be gained

ithin cluster J c_new 

. Then, compare J c_now 

and J c_old . If J c_new 

is less

han J c_old , then the new dividing results are saved, otherwise cal-

ulate the probability p . 

p = e 

(
J c _ new −J c _ old 

a ∗T now 

)
(9) 
here T now 

is the current temperature and a is a constant. When

enerating a number between [0, 1] uniformly distributed random

alue r and r ≤ p , then the new state is accepted. Otherwise, the

ew state is not accepted, and the algorithm continues the itera-

ion. After accepting the new state or if the total looping times in

he inner loop reaches the maximum number that we set for the

nner loop or the current temperature is lower than the minimum

emperature, the process of simulated annealing would be termi-

ated. But if the termination condition has not been satisfied, cool

own the temperature using the formula T now 

= T now 

∗ DR, and go

n the iteration of the simulated annealing. In the improved ver-

ion of simulated annealing in SCBSP, there is a certain probability

f jumping out current local optimal solution and achieve global

ptimal solution. 

In brief, after merging attribute and relationship of a graph into

 single similarity matrix, spectral clustering with PSO and SA is

mployed to cluster this graph. 

. Experimental study 

In order to verify the accuracy of the proposed algorithm, we

ompared the results of several clustering algorithms such as k-

eans, Spectral clustering, PSO, Spectral Clustering Based on PSO

SCP) and SCBSP. And the data sources are from Sina microblog,

acebook, as well as randomly generated data. In the preprocessing

f data from real-world social networks such as Sina Weibo and

acebook, some isolated points in data collection set are removed

n order to ensure good experimental results. 

In all of the following experiments, J c shown in formula ( 4 ) is

he criteria of evaluating the result of clustering. Apparently, the

ower the J c is, the better the performance a clustering algorithm

akes. 

Through practice, PSO algorithm performs well in low-

imensional sample space. Therefore, after we compressed infor-

ation and reduced dimension using spectral clustering, and as-

isted with the superior ability of SA to find global optimal solu-

ion, SCBSP makes excellent performance in the following experi-

ents. 

.1. Results on randomly generated data 

In the first experiment, for sake of experimental visibility, we

enerate three-dimensional random data to verify the performance

f SCBSP. In addition, in order to make the comparison between

CP and SCBSP more meaningful and to highlight the superior abil-

ty to obtain global optima of SA used in SCBSP, SCP and SCPSP in

his experiment both start from the same initial particle swarm. 

Here, the random data are generated by randomly selecting 6

oints at the beginning, then for each point, generating another

00 points according to normal distribution. We choose 4 as the

umber of clusters because in each small graph in the Fig. 1 , hu-

an being can identify generally 4 large dense groups of points.

hen we run the five different clustering algorithms. 

As we can see from Fig. 1 shown above, SCBSP performs the

est result among all five different clustering algorithms visually.

t is the only algorithm that gets actual 4 clusters, which is closest

o the result seen by human being. And in Fig. 2 which compares

 c result and running time of them, SCBSP has both the minimal J c 
esult and an acceptable running time result. 

Then, in the second experiment, 30-dimensional random data

re used for the comparison among clustering algorithms, with the

imilar generating method as experiment one, only different in the

umber of dimensions of points. What’s more, relatively higher di-

ensional data can highlight the good performance of spectral-

lustering-based algorithms due to the dimensionality reduction

rocess performed in SC. 
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Fig. 1. Clustering results of algorithms on 606 three-dimensional points. 
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Fig. 2. Clustering result ( J c and Time) of k-means, SC, PSO, SCP and SCBSP. 

Fig. 3. clustering result (average J c ) of k-means, SC, PSO, SCP and SCBSP on 200 

groups of different 606 30-dimensional random points. 
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For more stable result, we conducted 200 separate experiments

nd calculated average J c , and each experiment has 606 different

0-dimensional random points, using the similar data generating

trategy employed in experiment one. Then, the average J c of each

lgorithm in the 200 experiments is shown in Fig. 3 . 

In Fig. 3 , k-means, original SC, original PSO have similar re-

ults, but the other two SC-based algorithms, SCP and SCBSP, per-

orm better apparently. In addition, in the 200 experiments, SCP

chieves the minimal J c among the five algorithms for 69 times,

hile SCBSP for 108 times, and the J c of SCBSP is smaller than or

qual to that of SCP for 143 times. Therefore, SCBSP performs the

est among the five algorithms in this experiment. 

In the second experiment described above, clustering per-

ormance of the five algorithms have been compared on 30-

imensional random data. Furthermore, we would like to explore

he relationship between number of dimensions and the perfor-

ance of clustering algorithms. So, we make several separate

xperiments using random points whose number of dimension
ncreases from 2 to 100, and 20 different experiments for each di-

ension to get an average J c of each of the five algorithms. 

For a better visual experience, the J c of each algorithm is di-

ided by the J c of k-means in each experiment of a certain dimen-

ion. The result is in Fig. 4 . 

It is shown in Fig. 4 that SC-based algorithms perform better in

igher dimensional sample space, and SCBSP is the best in most

imensions. 

Through the experiment above, we can initially verify that the

mproved spectral clustering is correct. But the completely verifi-

ation need the operation on real social network data as follows. 

.2. Results on datasets from Sina microblog and Facebook 

Because the nodes in social network themselves do not contain

he information about which community it belongs to, the accu-

acy of the community division cannot be clearly judged. However,

he results of the cluster can still be evaluated by the similarity

f the nodes within the community, which means the nodes in

he same community have the similar properties. In this experi-

ent, the quality of community division by SCBSP is tested with

he dataset from the Sina microblog acquired by API. In the net-

ork, the information of each user is regard as the attribute of

ode. Meanwhile, the edge of the graph means the friendship be-

ween users. It is assumed that there are 4 clusters, in which con-

ition both SC and SCBSP have best performances. Comparing the

erformance of SC and SCBSP shown in Fig. 5 , SCBSP does better

han SC. 

In addition to the experiment on dataset from Sina Weibo, we

lso conducted experiment on a huge dataset from Facebook which

ontains 4038 nodes and 88,234 edges ( Tables 1 and 3 ). 

The strategy of data preprocessing is similar to that in the

revious experiment. The only difference is that we introduced

weight” while taking Facebook users’ attribute into consideration.

or example, assuming that the full mark is 10, then the weight of

school” is fairly larger number like 8 while the weight of “gender”

s relatively smaller number like 3, in that two people who study

n the same school is more likely to be friends than two people
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Table 1 Algorithm of traditional spectral clustering. 

Algorithm: Spectral clustering 

Input : 1. A graph G = (V, E) contains information of networks 

2. An attribute matrix for n node in G . 

Output : Clustering result. 

Phase 1(preprocess) 

1) Calculate similarity matrix S using formula ( 1 ) 

2) Calculate diagonal matrix D using the following equation: ⎧ ⎨ 

⎩ 

D ii = 

n ∑ 

j=1 

S ji 

D i j = 0 , i � = j 

(2) 

3) Calculate the Laplace matrix L of G using the following equation: 

L = D −1 / 2 ∗ S ∗ D −1 / 2 (3) 

Phase 2 

1) Find the largest k eigenvalues and find the corresponding eigenvectors of Laplace matrix L , then construct a new n ∗k matrix. The j th column of the 

eigenvectors-matrix is the eigenvector matching the j th largest eigenvalues, and i th row of the matrix is the information of i th node after dimensionality reduction. 

2) Cluster with the eigenvector-matrix by k-means clustering. 

Fig. 4. clustering result ( J c / J c of k-means) of k-means, SC, PSO, SCP and SCBSP on 606 random points with from 2 dimensions to 100 dimensions. 

Fig. 5. Clustering result ( J c ) of SC, SCP and SCBSP on dataset from Sina Weibo. 

 

 

 

 

Fig. 6. Clustering result ( J c ) of SC, SCP and SCBSP on dataset from Facebook. 

 

i  

f  

s  

t  

a  

g  
who have the same gender. The table of attribute and weight is

displayed in Table 2 . 

Taking both attribute and relationship into consideration, SC,

SCP and SCBSP are performed on the dataset and then obtain the

following result in Fig. 6 , which shows that SCBSP also performs

better than SC and SCP on dataset from Facebook. 
In the experiment, the relationship between friends is applied

n the SCBSP, while the original spectral clustering cannot make

ull use of this part of information. Taking these factors into con-

ideration, we can conclude that SCBSP has a gigantic advan-

age over original spectral clustering on community division. From

nother aspect, the results also show that relationship have a

reat impact on community division. Taking both attribute and
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Table 2 Algorithm of SCBSP. 

Algorithm: Spectral Clustering Based on Simulated Annealing and Particle Swarm Optimization 

Input : 1. A graph G = (V, E) contains information of social networks 

2. An attribute matrix for n node in G . 

Output : Community division result. 

Phase 1 

1) Construct the similarity matrix S by formula ( 8 ), diagonal matrix D by formula (2). 

2) Calculate Laplace matrix L by formula (3). 

3) Find the largest k eigenvalues and corresponding eigenvector R 1 , R 2 ,…,R k and get an eigenvector matrix. 

Phase 2 

Initialize the particle swarm and set the maximum steps of iteration, along with the initial random position and random velocity to categorize sample. 

Phase 3 

1) Calculate the J c for each particle and update the corresponding individual optimal value P i . 

2) Update the global optimal value P g with m individual optimal value. 

3) Optimize the global optimal value by simulated annealing algorithm. 

if iteration times of PSO < maximum number of iterations 

i ) Update velocity and position of particle by formula ( 6 ), ( 7 ) 

ii ) Recalculate the cluster centers 

iii ) Update the division that which community the nodes belong to 

iv ) Reapply Phase 3 

end if 

Table 3 

Weight of attributes of users (full mark is 10). 

Attribute Weight Attribute Weight 

Birthday 3 Location 4 

Education; classes 6 Political 7 

Concentration 7 Religion 7 

Education; degree 6 Work; employer 8 

Education; school 8 Work; end_date 5 

Education; type 5 Work; from 6 

Education; with 5 Work; location 7 

Education; year 6 Work; position 6 

Gender 3 Work; projects 6 

Hometown 5 Work; start_date 5 

Languages 4 Work; with 5 

r  

o

5
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elationship of nodes into account can have a great improvement

n community division. 

. Conclusion 

Since current clustering methods usually do not handle both

ttribute and relationship well, this paper proposed a new com-

unity division algorithm called Spectral Clustering Based on Sim-

lated annealing and Particle swarm optimization (SCBSP) which

erges attributes and relationship. The new approach of construct-

ng the similarity matrix in SCBSP not only avoids the use of Radial

asis Function, but also imports the relationship into the similar-

ty matrix. Moreover, SCBSP makes full use of the idea of simulated

nnealing and particle swarm optimization instead of methods like

-means in the framework of traditional spectral clustering. With

he idea of simulated annealing, the proposed algorithm can avoid

alling into local optimal solution. Meanwhile, particle swarm opti-

ization provides SCBSP with faster convergence rate. In addition,

he facts prove that they increase the effectiveness of SC in com-

unity division. From experimental results, merging attribute and

elationship of nodes can enhance the accuracy of community divi-

ion. Compared with the traditional spectral clustering, SCBSP has

etter application effect in social network. 

Though SCBSP has good experimental results, it is based on the

act that a portion of the noise of dataset should be removed be-

ore the experiment. If there are more noise nodes of sample col-

ection, the effect of comparison in the experiment will be not

deal enough. This aspect still needs further study. Meanwhile,

here still exist some strategies of improvements in the step of

imulated annealing. For instance, reducing maximum inner loop

imes and the maximum number of iteration will lead to differ-
nt complexity and efficiency. In SCBSP, the number of commu-

ity division should be known. While in the case of uncertain divi-

ion number, the aspect still needs further study. In the future, we

ill also explore more factors that can influent the effectiveness of

ommunity division and improve our proposed algorithm. In that

erging attribute and relationship of node can greatly affect the

lustering result, as we can see from the experiments, there prob-

bly exists more factors we have never considered. 
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